Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107320

RESUMO

Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.

2.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499637

RESUMO

Cachexia associated with chronic kidney disease (CKD) has been linked to GH resistance. In CKD, GH treatment enhances muscular performance. We investigated the impact of GH on cachexia brought on by CKD. CKD was induced by 5/6 nephrectomy in c57BL/6J mice. After receiving GH (10 mg/kg/day) or saline treatment for six weeks, CKD mice were compared to sham-operated controls. GH normalized metabolic rate, increased food intake and weight growth, and improved in vivo muscular function (rotarod and grip strength) in CKD mice. GH decreased uncoupling proteins (UCP)s and increased muscle and adipose tissue ATP content in CKD mice. GH decreased lipolysis of adipose tissue by attenuating expression and protein content of adipose triglyceride lipase and protein content of phosphorylated hormone-sensitive lipase in CKD mice. GH reversed the increased expression of beige adipocyte markers (UCP-1, CD137, Tmem26, Tbx1, Prdm16, Pgc1α, and Cidea) and molecules implicated in adipose tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in CKD mice. Additionally, GH normalized the molecular markers of processes connected to muscle wasting in CKD, such as myogenesis and muscle regeneration. By using RNAseq, we previously determined the top 12 skeletal muscle genes differentially expressed between mice with CKD and control animals. These 12 genes' aberrant expression has been linked to increased muscle thermogenesis, fibrosis, and poor muscle and neuron regeneration. In this study, we demonstrated that GH restored 7 of the top 12 differentially elevated muscle genes in CKD mice. In conclusion, GH might be an effective treatment for muscular atrophy and browning of adipose tissue in CKD-related cachexia.


Assuntos
Hormônio do Crescimento Humano , Insuficiência Renal Crônica , Camundongos , Animais , Hormônio do Crescimento/metabolismo , Caquexia/etiologia , Caquexia/complicações , Tecido Adiposo/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/complicações , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Músculo Esquelético/metabolismo , Hormônio do Crescimento Humano/metabolismo
3.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291130

RESUMO

Manifestations of infantile nephropathic cystinosis (INC) often include cachexia and deficiency of circulating vitamin D metabolites. We examined the impact of 25(OH)D3 versus 1,25(OH)2D3 repletion in Ctns null mice, a mouse model of INC. Six weeks of intraperitoneal administration of 25(OH)D3 (75 µg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) resulted in Ctns-/- mice corrected low circulating 25(OH)D3 or 1,25(OH)2D3 concentrations. While 25(OH)D3 administration in Ctns-/- mice normalized several metabolic parameters characteristic of cachexia as well as muscle function in vivo, 1,25(OH)2D3 did not. Administration of 25(OH)D3 in Ctns-/- mice increased muscle fiber size and decreased fat infiltration of skeletal muscle, which was accompanied by a reduction of abnormal muscle signaling pathways. 1,25(OH)2D3 administration was not as effective. In conclusion, 25(OH)D3 supplementation exerts metabolic advantages over 1,25(OH)2D3 supplementation by amelioration of muscle atrophy and fat browning in Ctns-/- mice.


Assuntos
Caquexia , Calcitriol , Camundongos , Animais , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Caquexia/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Camundongos Knockout , Tecido Adiposo/metabolismo , Suplementos Nutricionais
4.
Cell Mol Immunol ; 19(7): 791-804, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545662

RESUMO

Type 2 diabetes (T2D) is highly associated with obesity. However, the factors that drive the transition from excessive weight gain to glucose metabolism disruption are still uncertain and seem to revolve around systemic immune disorder. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial metabolites, have been reported to be altered in obese people and to lead to metabolic dysfunction during obesity. By studying the immunophenotypes of blood MAIT cells from a cross-sectional cohort of obese participants with/without T2D, we found an elevation in CD27-negative (CD27-) MAIT cells producing a high level of IL-17 under T2D obese conditions, which could be positively correlated with impaired glucose metabolism in obese people. We further explored microbial translocation caused by gut barrier dysfunction in obese people as a triggering factor of MAIT cell abnormalities. Specifically, accumulation of the bacterial strain Bacteroides ovatus in the peripheral blood drove IL-17-producing CD27- MAIT cell expansion and could be associated with T2D risk in obese individuals. Overall, these results suggest that an aberrant gut microbiota-immune axis in obese people may drive or exacerbate T2D. Importantly, CD27- MAIT cell subsets and Bacteroides ovatus could represent targets for novel interventional strategies. Our findings extend current knowledge regarding the clinical relevance of body mass index (BMI)-associated variation in circulating MAIT cells to reveal the role of these cells in obesity-related T2D progression and the underlying cellular mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Células T Invariantes Associadas à Mucosa , Bacteroides , Estudos Transversais , Glucose , Humanos , Interleucina-17 , Obesidade , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
5.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943890

RESUMO

Patients with chronic kidney disease (CKD) often have low serum concentrations of 25(OH)D3 and 1,25(OH)2D3. We investigated the differential effects of 25(OH)D3 versus 1,25(OH)2D3 repletion in mice with surgically induced CKD. Intraperitoneal supplementation of 25(OH)D3 (75 µg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) for 6 weeks normalized serum 25(OH)D3 or 1,25(OH)2D3 concentrations in CKD mice, respectively. Repletion of 25(OH)D3 normalized appetite, significantly improved weight gain, increased fat and lean mass content and in vivo muscle function, as well as attenuated elevated resting metabolic rate relative to repletion of 1,25(OH)2D3 in CKD mice. Repletion of 25(OH)D3 in CKD mice attenuated adipose tissue browning as well as ameliorated perturbations of energy homeostasis in adipose tissue and skeletal muscle, whereas repletion of 1,25(OH)2D3 did not. Significant improvement of muscle fiber size and normalization of fat infiltration of gastrocnemius was apparent with repletion of 25(OH)D3 but not with 1,25(OH)2D3 in CKD mice. This was accompanied by attenuation of the aberrant gene expression of muscle mass regulatory signaling, molecular pathways related to muscle fibrosis as well as muscle expression profile associated with skeletal muscle wasting in CKD mice. Our findings provide evidence that repletion of 25(OH)D3 exerts metabolic advantages over repletion of 1,25(OH)2D3 by attenuating adipose tissue browning and muscle wasting in CKD mice.


Assuntos
Tecido Adiposo Marrom/patologia , Caquexia/complicações , Calcifediol/farmacologia , Insuficiência Renal Crônica/complicações , Vitamina D/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Caquexia/sangue , Ingestão de Energia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Insuficiência Renal Crônica/sangue , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Vitamina D/farmacologia , Síndrome de Emaciação/complicações , Aumento de Peso/efeitos dos fármacos
6.
Cells ; 10(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34440723

RESUMO

Mice lacking the functional cystinosin gene (Ctns-/-), a model of infantile nephropathic cystinosis (INC), exhibit the cachexia phenotype with adipose tissue browning and muscle wasting. Elevated leptin signaling is an important cause of chronic kidney disease-associated cachexia. The pegylated leptin receptor antagonist (PLA) binds to but does not activate the leptin receptor. We tested the efficacy of this PLA in Ctns-/- mice. We treated 12-month-old Ctns-/- mice and control mice with PLA (7 mg/kg/day, IP) or saline as a vehicle for 28 days. PLA normalized food intake and weight gain, increased fat and lean mass, decreased metabolic rate and improved muscle function. It also attenuated perturbations of energy homeostasis in adipose tissue and muscle in Ctns-/- mice. PLA attenuated adipose tissue browning in Ctns-/- mice. PLA increased gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correcting the increased expression of muscle wasting signaling while promoting the decreased expression of myogenesis in gastrocnemius of Ctns-/- mice. PLA attenuated aberrant expressed muscle genes that have been associated with muscle atrophy, increased energy expenditure and lipolysis in Ctns-/- mice. Leptin antagonism may represent a viable therapeutic strategy for adipose tissue browning and muscle wasting in INC.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Caquexia/prevenção & controle , Cistinose/tratamento farmacológico , Antagonistas de Hormônios/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Receptores para Leptina/antagonistas & inibidores , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Cistinose/complicações , Cistinose/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Receptores para Leptina/metabolismo , Transdução de Sinais
7.
Sci Rep ; 11(1): 15141, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302016

RESUMO

Cytokines such as IL-6, TNF-α and IL-1ß trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1ß-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1ß-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1ß in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Caquexia/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/fisiologia
8.
J Cachexia Sarcopenia Muscle ; 12(5): 1296-1311, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34196133

RESUMO

BACKGROUND: Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns-/- mice. METHODS: We generated Ctns-/- Il1ß-/- mice, and we treated Ctns-/- and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns-/- mice. RESULTS: Skeletal muscle expression of IL-1ß was significantly elevated in Ctns-/- mice relative to wild-type control mice. Cachexia was completely normalized in Ctns-/- Il1ß-/- mice relative to Ctns-/- mice. We showed that anakinra attenuated the cachexia phenotype in Ctns-/- mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns-/- mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns-/- mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65 and mRNA expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns-/- mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns-/- mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns-/- mice. CONCLUSIONS: Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.


Assuntos
Cistinose , Atrofia Muscular , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Cistinose/patologia , Humanos , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia
9.
Sci Rep ; 10(1): 14175, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843714

RESUMO

Patients with chronic kidney disease (CKD) are often 25(OH)D3 and 1,25(OH)2D3 insufficient. We studied whether vitamin D repletion could correct aberrant adipose tissue and muscle metabolism in a mouse model of CKD-associated cachexia. Intraperitoneal administration of 25(OH)D3 and 1,25(OH)2D3 (75 µg/kg/day and 60 ng/kg/day respectively for 6 weeks) normalized serum concentrations of 25(OH)D3 and 1,25(OH)2D3 in CKD mice. Vitamin D repletion stimulated appetite, normalized weight gain, and improved fat and lean mass content in CKD mice. Vitamin D supplementation attenuated expression of key molecules involved in adipose tissue browning and ameliorated expression of thermogenic genes in adipose tissue and skeletal muscle in CKD mice. Furthermore, repletion of vitamin D improved skeletal muscle fiber size and in vivo muscle function, normalized muscle collagen content and attenuated muscle fat infiltration as well as pathogenetic molecular pathways related to muscle mass regulation in CKD mice. RNAseq analysis was performed on the gastrocnemius muscle. Ingenuity Pathway Analysis revealed that the top 12 differentially expressed genes in CKD were correlated with impaired muscle and neuron regeneration, enhanced muscle thermogenesis and fibrosis. Importantly, vitamin D repletion normalized the expression of those 12 genes in CKD mice. Vitamin D repletion may be an effective therapeutic strategy for adipose tissue browning and muscle wasting in CKD patients.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Caquexia/tratamento farmacológico , Calcifediol/uso terapêutico , Calcitriol/uso terapêutico , Insuficiência Renal Crônica/complicações , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Caquexia/etiologia , Caquexia/fisiopatologia , Calcifediol/sangue , Calcifediol/deficiência , Calcifediol/farmacologia , Calcitriol/sangue , Calcitriol/deficiência , Calcitriol/farmacologia , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Fibrose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Força da Mão , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Nefrectomia , Hormônio Paratireóideo/sangue , RNA Mensageiro/biossíntese , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/tratamento farmacológico , Teste de Desempenho do Rota-Rod , Análise de Sequência de RNA , Termogênese/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
10.
J Cachexia Sarcopenia Muscle ; 11(1): 120-134, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31721480

RESUMO

BACKGROUND: Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Ctns-/- mice are 25(OH)D3 and 1,25(OH)2 D3 insufficient. We investigated whether vitamin D repletion could ameliorate adipose tissue browning and muscle wasting in Ctns-/- mice. METHODS: Twelve-month-old Ctns-/- mice and wild-type controls were treated with 25(OH)D3 and 1,25(OH)2 D3 (75 µg/kg/day and 60 ng/kg/day, respectively) or an ethylene glycol vehicle for 6 weeks. Serum chemistry and parameters of energy homeostasis were measured. We quantitated total fat mass and studied expression of molecules regulating adipose tissue browning, energy metabolism, and inflammation. We measured lean mass content, skeletal muscle fibre size, in vivo muscle function (grip strength and rotarod activity), and expression of molecules regulating muscle metabolism. We also analysed the transcriptome of skeletal muscle in Ctns-/- mice using RNAseq. RESULTS: Supplementation of 25(OH)D3 and 1,25(OH)2 D3 normalized serum concentration of 25(OH)D3 and 1,25(OH)2 D3 in Ctns-/- mice, respectively. Repletion of vitamin D partially or fully normalized food intake, weight gain, gain of fat, and lean mass, improved energy homeostasis, and attenuated perturbations of uncoupling proteins and adenosine triphosphate content in adipose tissue and muscle in Ctns-/- mice. Vitamin D repletion attenuated elevated expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) as well as aberrant expression of molecules implicated in adipose tissue browning (Cox2, Pgf2α, and NF-κB pathway) in inguinal white adipose tissue in Ctns-/- mice. Vitamin D repletion normalized skeletal muscle fibre size and improved in vivo muscle function in Ctns-/- mice. This was accompanied by correcting the increased muscle catabolic signalling (increased protein contents of IL-1ß, IL-6, and TNF-α as well as an increased gene expression of Murf-2, atrogin-1, and myostatin) and promoting the decreased muscle regeneration and myogenesis process (decreased gene expression of Igf1, Pax7, and MyoD) in skeletal muscles of Ctns-/- mice. Muscle RNAseq analysis revealed aberrant gene expression profiles associated with reduced muscle and neuron regeneration, increased energy metabolism, and fibrosis in Ctns-/- mice. Importantly, repletion of 25(OH)D3 and 1,25(OH)2 D3 normalized the top 20 differentially expressed genes in Ctns-/- mice. CONCLUSIONS: We report the novel findings that correction of 25(OH)D3 and 1,25(OH)2 D3 insufficiency reverses cachexia and may improve quality of life by restoring muscle function in an animal model of infantile nephropathic cystinosis. Mechanistically, vitamin D repletion attenuates adipose tissue browning and muscle wasting in Ctns-/- mice via multiple cellular and molecular mechanisms.


Assuntos
Tecido Adiposo Marrom/metabolismo , Caquexia/etiologia , Cistinose/tratamento farmacológico , Músculo Esquelético/fisiopatologia , Vitamina D/uso terapêutico , Animais , Caquexia/complicações , Cistinose/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Atrofia Muscular , Vitamina D/farmacologia
11.
Kidney Int ; 96(2): 350-362, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30928021

RESUMO

Inflammation is involved in the pathogenesis of many disorders. However, the underlying mechanisms are often unknown. Here, we test whether cystinosin, the protein involved in cystinosis, is a critical regulator of galectin-3, a member of the ß-galactosidase binding protein family, during inflammation. Cystinosis is a lysosomal storage disorder and, despite ubiquitous expression of cystinosin, the kidney is the primary organ impacted by the disease. Cystinosin was found to enhance lysosomal localization and degradation of galectin-3. In Ctns-/- mice, a mouse model of cystinosis, galectin-3 is overexpressed in the kidney. The absence of galectin-3 in cystinotic mice ameliorates pathologic renal function and structure and decreases macrophage/monocyte infiltration in the kidney of the Ctns-/-Gal3-/- mice compared to Ctns-/- mice. These data strongly suggest that galectin-3 mediates inflammation involved in kidney disease progression in cystinosis. Furthermore, galectin-3 was found to interact with the pro-inflammatory cytokine Monocyte Chemoattractant Protein-1, which stimulates the recruitment of monocytes/macrophages, and proved to be significantly increased in the serum of Ctns-/- mice and also patients with cystinosis. Thus, our findings highlight a new role for cystinosin and galectin-3 interaction in inflammation and provide an additional mechanistic explanation for the kidney disease of cystinosis. This may lead to the identification of new drug targets to delay cystinosis progression.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinose/complicações , Síndrome de Fanconi/imunologia , Galectina 3/metabolismo , Inflamação/imunologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Cistina/metabolismo , Cistinose/imunologia , Cistinose/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Progressão da Doença , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patologia , Feminino , Galectina 3/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/patologia , Lisossomos/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Proteólise
12.
Curr Pharm Des ; 24(9): 1012-1018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29366406

RESUMO

Leptin antagonists (L39A/D40A/F4lA mutants) of mouse, human, rat and ovine leptins were developed in our laboratory by rational mutagenesis, expressed in Escherichia coli, refolded and purified to homogeneity. Pegylation of these antagonists resulted in long-acting reagents suitable for in-vivo studies. Further selection of high-affinity leptin antagonists was achieved by random mutagenesis of the whole open reading frame followed by yeast- surface display; an additional mutation (D23L) increased their affinity toward leptin receptor 60-fold. This superactive pegylated mouse leptin antagonist (PLA) exhibited a strong orexigenic effect, leading, in 10-14 days, to a 40% increase in body weight resulting mainly from obesity; this was reversed once PLA treatment was ceased. Cachexia is common in patients with Chronic Kidney Disease (CKD). Our studies suggested that leptin mediates cachexia by decreasing food intake while increasing energy consumption in CKD mice. We showed that PLA ameliorates CKD-associated cachexia in mice. Leptin may also contribute to the development of muscle and renal fibrosis in CKD, serious complications associated with increased morbidity and mortality. Transforming growth factor (TGF)-ß signaling may be the most potent mediator of fibrogenesis in multiple organs, and leptin is a co-activator of TGF-ß. Muscle fibrosis was evident in our CKD mice and PLA treatment significantly reduced the mRNA levels of TGF- ß1 and its downstream targets in their muscle and renal tissues. PLA may offer a novel therapeutic strategy for CKD-associated cachexia, muscle and renal fibrosis to improve CKD patients' survival and quality of life.


Assuntos
Caquexia/tratamento farmacológico , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores para Leptina/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos
13.
Pediatr Nephrol ; 33(5): 789-798, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28508131

RESUMO

Loss of lean body mass is a relevant component of the cachexia, or protein energy wasting (PEW), syndrome. Reduced muscle mass seems to be the most solid criterion for the presence of cachexia/PEW in patients with chronic kidney disease (CKD), and those with greater muscle mass loss have a higher risk of death. Children with CKD have many risk factors for lean mass and muscle wasting, including poor appetite, inflammation, growth hormone resistance, and metabolic acidosis. Mortality risks in patients with CKD increases as body mass index (BMI) and weight decreases. However, data regarding cachexia/PEW and muscle wasting in children with CKD is scarce due to lack of consensus in diagnostic criteria and an appropriate investigative methodology. Further research is urgently needed to address this important complication in the pediatric CKD setting, which may have fundamental impact on clinical outcomes.


Assuntos
Caquexia/etiologia , Insuficiência Renal Crônica/complicações , Adolescente , Caquexia/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fatores de Risco , Adulto Jovem
14.
Kidney Int ; 92(2): 281-283, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28709594

RESUMO

Cachexia with wasting of muscle protein is a serious complication of chronic kidney disease (CKD). Muscle protein phosphorylation is a potential therapeutic target. Liu et al. reported that small C-terminal domain phosphatase (SCP) 4 was increased in muscles of patients and mice with CKD. Importantly, knockdown of SCP4 significantly ameliorated muscle wasting in CKD mice. Inhibition of SCP4 may represent a novel therapeutic intervention for muscle wasting in patients with CKD.


Assuntos
Insuficiência Renal Crônica , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas Musculares , Atrofia Muscular , Monoéster Fosfórico Hidrolases
16.
J Cachexia Sarcopenia Muscle ; 7(2): 152-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27493869

RESUMO

BACKGROUND: Muscle wasting is a common complication in patients with infantile nephropathic cystinosis, but its mechanism and association with energy metabolism is not known. We define the metabolic phenotype in Ctns(-/-) mice, an established murine model of infantile nephropathic cystinosis, with focus on muscle wasting and energy homeostasis. METHODS: Male Ctns(-/-) mice and wild-type (WT) controls were studied at 1, 4, 9, and 12 months of age. As Ctns(-/-) mice started to develop chronic kidney disease (CKD) at 9 months of age, 9- and 12-month-old Ctns(-/-) mice were also compared with age-matched WT mice with CKD. Serum and urine chemistry and energy homeostasis parameters were measured. Skeletal muscle histomorphometry and in vivo muscle function were measured. We studied expression of genes involved in muscle mass regulation, thermogenesis, energy metabolism, adipogenesis, and adipose tissue browning in Ctns(-/-) mice. RESULTS: Ctns(-/-) mice showed loss of weight and lean mass and increased energy expenditure. Ctns(-/-) mice exhibited abnormal energy homeostasis before the onset of their CKD. Food intake in Ctns(-/-) mice was comparable with age-matched WT controls. However, significantly lower total body mass starting at 1 month of age and increased energy expenditure at 4 months of age preceded the onset of CKD at 9 months of age in Ctns(-/-) mice. Muscle accept content in 1- and 4-month-old Ctns(-/-) mice was significantly lower than that in age-matched WT controls. At 12 months of age, muscle fibre area and in vivo muscle strength was reduced in Ctns(-/-) mice than that in WT or CKD controls. Muscle wasting in Ctns(-/-) mice was associated with inhibition of myogenesis, activation of muscle proteolysis pathways, and overexpression of pro-inflammatory cytokines. Increased energy expenditure was associated with elevation of thermogenesis in skeletal muscle and adipose tissues. The development of beige adipocytes in Ctns(-/-) mice is a novel finding. Expression of beige adipose cell surface markers (CD137, Tmem26, and Tbx1) and uncoupling protein-1, which is a brown adipose tissue marker, was observed in inguinal white adipose tissue of Ctns(-/-) mice. Expression of key molecules implicated in the pathogenesis of adipose tissue browning (Cox2, cytochrome c oxidase subunit II; PGF2α, prostaglandin F2α; IL-1α, interleukin 1α; IL-6, interleukin 6; TNF-α, tumor necrosis factor α) was significantly increased in inguinal white adipose tissue of Ctns(-/-) mice than that in WT controls. CONCLUSION: This study describes a mouse model of nephropathic cystinosis presenting with profound muscle wasting. The mechanism for hypermetabolism in Ctns(-/-) mice may involve up-regulation of thermogenesis pathways in skeletal muscle and adipose tissues. This study demonstrates, for the first time, the development of beige adipocytes in Ctns(-/-) mice. Understanding the underlying mechanisms of adipose tissue browning in cystinosis may lead to novel therapy.

17.
Mol Cell Endocrinol ; 437: 268-279, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378149

RESUMO

Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Diterpenos/uso terapêutico , Hiperglicemia/tratamento farmacológico , Inflamação/patologia , Rim/patologia , NF-kappa B/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Diterpenos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glucose/toxicidade , Humanos , Hiperglicemia/complicações , Hipertrofia , Inflamação/complicações , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
18.
World J Nephrol ; 5(3): 274-82, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27152263

RESUMO

Chronic inflammation and nutritional imbalance are important comorbid conditions that correlate with poor clinical outcomes in children with chronic kidney disease (CKD). Nutritional disorders such as cachexia/protein energy wasting, obesity and growth retardation negatively impact the quality of life and disease progression in children with CKD. Inadequate nutrition has been associated with growth disturbances in children with CKD. On the other hand, over-nutrition and obesity are associated with poor outcomes in children with CKD. The exact mechanisms leading to these unfavorable conditions are not fully elucidated and are most likely multifactorial. In this review, we focus on the pathophysiology of nutrition disorders and inflammation and their impact on clinical outcomes in children with CKD.

19.
World J Nephrol ; 4(2): 223-9, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25949935

RESUMO

In recent years, obesity has become an increasingly important epidemic health problem in children and adolescents. The prevalence of the overweight status in children grew from 5% to 11% from 1960s to 1990s. The epidemic of obesity has been paralleled by an increase in the incidence of chronic kidney disease (CKD) and hypertension. Results of several studies have demonstrated that obesity and metabolic syndrome were independent predictors of renal injury. The pathophysiology of obesity related hypertension is complex, including activation of sympathetic nervous system, renin angiotensin aldosterone system, hyperinsulinemia and inflammation. These same mechanisms likely contribute to the development of increased blood pressure in children. This review summarizes the recent epidemiologic data linking obesity with CKD and hypertension in children, as well as the potential mechanisms.

20.
Curr Opin Support Palliat Care ; 8(4): 352-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25259544

RESUMO

PURPOSE OF REVIEW: The anorexia-cachexia syndrome is a complication of many chronic conditions including cancer, chronic obstructive pulmonary disease, congestive heart failure, and chronic kidney disease (CKD). Leptin levels are significantly elevated in CKD patients and are associated with markers of poor nutritional status as well as mortality and morbidity. This review will focus on the mechanism and exploit the therapeutic potential of leptin signaling in CKD-associated cachexia. RECENT FINDINGS: Studies in db/db mice show that the lack of leptin receptor is protective against CKD-induced cachexia. Blockade of leptin's downstream mediators, such as melanocortin-4 receptor, attenuated CKD-associated cachexia. Pegylation of leptin antagonists resulted in a potent and effective long-acting reagents suitable for in-vivo studies or therapies. Pegylated leptin antagonist treatment ameliorates CKD-associated cachexia in mice. SUMMARY: Leptin antagonism may represent a viable therapeutic strategy for cachexia in CKD.


Assuntos
Caquexia/tratamento farmacológico , Caquexia/fisiopatologia , Leptina/antagonistas & inibidores , Animais , Citocinas/metabolismo , Humanos , Camundongos , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptores para Leptina/antagonistas & inibidores , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...